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Latent state—trait (LST) analysis is frequently applied in psychological research to determine the degree
to which observed scores reflect stable person-specific effects, effects of situations and/or person—
situation interactions, and random measurement error. Most LST applications use multiple repeatedly
measured observed variables as indicators of latent trait and latent state residual factors. In practice, such
indicators often show shared indicator-specific (or method) variance over time. In this article, the authors
compare 4 approaches to account for such method effects in LST models and discuss the strengths and
weaknesses of each approach based on theoretical considerations, simulations, and applications to actual
data sets. The simulation study revealed that the LST model with indicator-specific traits (Eid, 1996) and
the LST model with M — 1 correlated method factors (Eid, Schneider, & Schwenkmezger, 1999)
performed well, whereas the model with M orthogonal method factors used in the early work of Steyer,
Ferring, and Schmitt (1992) and the correlated uniqueness approach (Kenny, 1976) showed limitations
under conditions of either low or high method-specificity. Recommendations for the choice of an
appropriate model are provided.
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Many theories in psychology are concerned with the distinction
of temporally stable versus variable (occasion-specific) compo-
nents of behavior. As Hertzog and Nesselroade (1987) pointed out,
“Generally it is certainly the case that most psychological attri-
butes will neither be, strictly speaking, traits or states. That is,
attributes can have both trait and state components” (p. 95). In the
late 1980s and early 1990s, the first attempts were made to use
latent variable techniques such as structural equation modeling to
analyze the degree to which psychological measurements reflect
stable attributes, occasion-specific fluctuations, and random mea-
surement error (e.g., Hertzog & Nesselroade, 1987; Ormel &
Schaufeli, 1991).

Latent state—trait (LST) theory (Steyer, Ferring, & Schmitt,
1992; Steyer, Majcen, Schwenkmezger, & Buchner, 1989; Steyer
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& Schmitt, 1990a; Steyer, Schmitt, & Eid, 1999) provides a
powerful theoretical framework for defining latent trait, latent state
residual, and measurement error variables. In contrast to traditional
factor analytic approaches, LST theory explicitly defines these
latent variables as conditional expectations of observed variables
given persons and situations or as functions of such conditional
expectations (for details, see Appendix A, as well as Steyer &
Schmitt, 1990a; Steyer et al., 1992, 1999). As a consequence, LST
theory provides well-defined latent variables that have a clear and
unambiguous interpretation, making this a very strong psychomet-
ric theory for analyzing stable, occasion-specific, and random error
components of psychological measurements.

Since the early theoretical work by Steyer and colleagues, there
has been an ever-growing interest in LST theory and models.
Models of LST theory are widely applied in various fields of
psychology, including research in personality (e.g., Deinzer et al.,
1995; Moskowitz & Zuroff, 2004; Schmitt, Gollwitzer, Maes, &
Arbach, 2005; Vautier, 2004), emotion (e.g., Windle & Dumenci,
1998), subjective well-being (e.g., Eid & Diener, 2004), job sat-
isfaction (Dormann, Fay, Zapf, & Frese, 2006), marketing (Baum-
gartner & Steenkamp, 2006), psychoneuroendocrinology (Kirsch-
baum et al., 1990), psychophysiology (e.g., Hagemann, Hewig,
Seifert, Naumann, & Bartussek, 2005), and psychopathology
(King, Molina, & Chassin, 2008). Furthermore, the past 20 years
have witnessed a dramatic increase in the development, testing,
and extension of LST models in such varying contexts as multi-
construct modeling (Dumenci & Windle, 1998; Eid, Notz, Steyer,
& Schwenkmezger, 1994; Steyer, Schwenkmezger, & Auer,
1990), categorical data analysis (Eid, 1995, 1996; Eid & Hoft-
mann, 1998), latent class analysis (Eid, 2007; Eid & Langeheine,
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1999), hierarchical LST models (Schermelleh-Engel, Keith, Moos-
brugger, & Hodapp, 2004), mixture distribution analysis (Cour-
voisier, Eid, & Nussbeck, 2007), autoregressive models (Ciesla,
Cole, & Steiger, 2007; Cole, Martin, & Steiger, 2005; Kenny &
Zautra, 1995; Steyer & Schmitt, 1994), latent change models (Eid
& Hoffmann, 1998), latent growth curve analysis (Geiser, Keller,
& Lockhart, in press; Mayer, Steyer, & Mueller, in press; Tisak &
Tisak, 2000), person-level LST analysis (Hamaker, Nesselroade,
& Molenaar, 2007), and multimethod measurement (Courvoisier,
2006; Courvoisier, Nussbeck, Eid, Geiser, & Cole, 2008).

In the present article, our focus is on modeling method effects in
LST models. Schmitt (2006) defined a psychological assessment
method as “a set containing a variety of instruments and proce-
dures that uncover psychological attributes of objects and trans-
form these attributes into symbols that can be processed” (p. 17).
Method effects may arise due to the use of, for example, different
items, tests, raters, or even different situations or occasions of
measurement that contain specific components not shared with
other indicators of the same construct (see Podsakoff, MacKenzie,
Lee, & Podsakoff, 2003, for a detailed overview of sources of
method variance in the behavioral sciences).

The present study extends the work of LaGrange and Cole
(2008), who recently compared different approaches to modeling
method effects in LST models. As in LaGrange and Cole’s study,
our focus here is on multiple-indicator LST models (Steyer et al.,
1992, 1999). In contrast to single-indicator LST models (Kenny,
2001; Kenny & Zautra, 1995), multiple-indicator LST models
make use of multiple repeatedly administered scales or items to
measure latent trait, latent state residual, and measurement error
variables. Method effects are typically present in multiple-
indicator applications due to the repeated administration of the
same indicators over time (Cole & Maxwell, 2003). The purpose
of this article is to (a) provide a theoretical review of different
approaches for handling method effects in LST analyses, (b)
examine the performance of these approaches based on a simula-
tion study and applications to real data, and (c) discuss advantages
and limitations based on the theoretical considerations and empir-
ical findings of this study.

In contrast to Courvoisier et al. (2008; Courvoisier, 2006), who
considered the case of multiple methods (e.g., raters), each of
which provides multiple indicators at each time point, our main
focus here is on the more common situation in which one either
studies (a) multiple indicators pertaining to just a single method or
rater over time (e.g., multiple repeatedly administered self-report
items) or (b) different methods (e.g., different raters) providing just
a single indicator at each time point. Such a design is used in the
vast majority of applications of LST models. (Later on, we return
to the advantages of using multiple indicators for each method
based on an application.) As we explain in detail below, even in
LST designs that use just a single method, method effects occur
routinely due to having multiple repeatedly measured indicators.

The LST Model With No Method Factors

The starting point for a multiple-indicator LST analysis is a set
of repeatedly administered observed indicator variables Y,, (i =
indicator, i = 1, ..., m; t = time point, t = 1, .. ., n) that pertain
to the same construct (e.g., anxiety, subjective well-being, extra-
version, etc.).! Indicators for a construct in an LST model could,

for example, be different items, scale scores, or physiological
measures, but also scores obtained from different raters.” In the
most simple LST model, each observed variable measures an
(occasion-unspecific) latent trait factor 7 and an (occasion-
specific) latent state residual factor SR, (e.g., Eid & Diener, 2004):

Y =N;T+8,SR,+¢;, (D

where \,, represents a trait factor loading, 9, represents a state
residual factor loading, €,, is an error variable, and all variables are
in deviation form (i.e., mean-centered). The latent trait factor 7'
represents the time-unspecific (stable) component and is by defi-
nition uncorrelated with the latent state residual factors SR,.* The
factors SR, reflect the effects of the situation as well as Person X
Situation interactions (Steyer et al., 1992, 1999). The error variable
€, is by definition uncorrelated with 7 and all SR, (Steyer et al.,
1992). In line with Steyer et al. (1999) we additionally make the
assumption that (a) all latent state residual factors SR, are uncor-
related with each other* and (b) all error variables are uncorrelated
with each other. There are no method factors in this model. Hence,
we refer to this model as the no method factor (NM) model. Figure
1 shows a path diagram of the NM model for three observed
variables measured on three time points.

Given the uncorrelatedness of trait, state residual, and error
variables, the following variance decomposition holds for the
observed variables:

Var(Y,)=NVar(T) + 8:Var(SR,) + Var(g,). 2)

This additive variance decomposition allows defining three co-
efficients of determination that are of key interest to virtually all
LST applications: the consistency (CO), occasion-specificity
(OSpe), and reliability (Rel) coefficients (Steyer et al., 1999). CO
indicates to which degree individual differences are determined by
stable person-specific effects:

N2Var(T)
co,) = Var(Y,) " 3)
The OSpe coefficient indicates to which degree individual dif-
ferences are determined by the situation and/or Person X Situation
interactions:

B 32Var(SR,)
OSpe(Y,) = Var(Y,) 4)

! Details on the exact definition of the latent variables in LST theory are
provided in Appendix A.

2 In the classical LST model, the observed variables are assumed to be
continuous (e.g., test or questionnaire scores, physiological measurements
on a continuous scale, etc.), although Eid (1995, 1996; Eid & Hoffmann,
1998) has shown how to define LST models for ordered categorical
indicators. For the sake of simplicity, we assume continuous indicators
throughout this article.

3 The uncorrelatedness of 7 and SR, follows from the definition of the
SR, factors as residuals with respect to 7. See Appendix A, as well as Steyer
& Schmitt (1990a), for details.

4 Note that the assumption of uncorrelated SR, factors can be relaxed.
Steyer and Schmitt (1994) and Cole et al. (2005) discussed LST models
with autoregressive components that do not make the assumption of
uncorrelated state residual variables.
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Figure 1. Latent state—trait model with no method factors. Y;, denotes the
ith observed variable (indicator) measured at time 7. 7 = latent trait factor;
SR, = latent state residual factor; \; = trait factor loading; 3, = state
residual factor loading.

The reliability coefficient indicates the degree to which ob-
served individual differences are due to reliable sources of vari-
ance (rather than measurement error) and therefore equals the sum
of consistency and occasion-specificity coefficients:

NeVar(T) + 82Var(SR,)
Var(Y,)

Rel(Y,) =

Var(g,)
~ Var(v,)

OSpe(Y;) + CO(Y;). (%)

The consistency, occasion-specificity, and (1 — reliability) co-
efficients sum up to 1, that is,

CO(Y;) + OSpe(Y,) + [1 — Rel(Y;)] = 1.

Substantively, the coefficients of consistency and occasion-
specificity are useful to study the degree of stability versus situation
dependence of psychological measurements. For example, Windle
and Dumenci (1998) examined trait and state residual components of
depressed mood among mothers and their adolescent children and
found that depressed mood was both stable and situation dependent
for both reporters. After removing variance due to occasion-
specificity, the authors demonstrated a clearer link between maternal
and adolescent depression than had previously been established. In
sum, the estimation of these variance components is the main focus of
most studies that employ LST models, and these coefficients are also
of key interest to the present study on method effects. In particular, we
are interested in how reliably these coefficients are estimated in
different approaches for modeling method effects.

Method Effects in LST Models

The NM model assumes that the variances and covariances of the
observed variables (indicators) are fully explained by the latent trait

factors, state residual factors, and error variables. Error variables are
assumed to be uncorrelated. This implies that indicators may not share
idiosyncratic components with themselves over time. However, in
practice, most indicators contain a unique (method-specific) compo-
nent that may not be shared with the remaining indicators (Cole et al.,
2005; Steyer et al., 1992). As a consequence, identical indicators may
be more highly correlated with themselves over time than with other
indicators (Cole & Maxwell, 2003).

In LST analyses, method effects may be present for at least two
reasons. First, if questionnaire items serve as indicators, these
items may, for example, differ in wording (e.g., some items may be
positively, others negatively worded) or content. Slight differences
in item content are usually desired features of a scale in order to
achieve greater construct validity of that measure (Cronbach,
1990). Second, even stronger indicator-specific effects must be
expected if different indicators of the same construct were ob-
tained from distinct methods or raters (e.g., self- vs. other ratings;
Geiser, Eid, Nussbeck, Courvoisier, & Cole, 2010). The use of
multiple, possibly very different methods to measure the constructs
of interest has been strongly advocated since Campbell and Fiske’s
(1959) seminal article on the multitrait-multimethod (MTMM)
matrix (Eid & Diener, 2006). As Cole, Ciesla, and Steiger (2007)
noted, “In an ideal world, all researchers would use at least three
(and preferably more) completely orthogonal methods to measure
all constructs in every study” (p. 382). When different methods are
used as indicators, the convergent validity of such methods will
often be rather low (e.g., Fiske & Campbell, 1992), and as shown
below, this must be taken into account when conducting an LST
analysis in order to avoid bias in parameter estimation.

In sum, method effects are a ubiquitous phenomenon in longi-
tudinal research, whether different indicators represent different
items, raters, or other types of methods. The issue of method
effects has been extensively discussed in the general literature in
the context of longitudinal structural equation models (e.g., Cole &
Maxwell, 2003; Joreskog, 1979a, 1979b; Marsh & Grayson, 1995;
Raffalovich & Bohrnstedt, 1987; Sorbom, 1975; Tisak & Tisak,
2000). Although LST models with method factors were presented
early in the history of LST theory (Steyer et al., 1992), the problem
of method effects has not received much explicit attention in the
context of LST analyses. Most LST studies have treated such
effects as a nuisance or side effect, and various authors have
addressed this problem in very different ways (see Appendix B for
an overview of applications of LST models and the type of
approaches used in these studies to deal with method effects). The
only article we know of that has explicitly studied the performance
of different approaches to modeling method effects in the context
of LST analysis is a recent study by LaGrange and Cole (2008).
Before we summarize LaGrange and Cole’s findings, we discuss
different approaches to modeling method effects in LST analyses.

Approaches for Addressing Method Effects
in LST Models

The Correlated Uniqueness Approach

A frequently used way to account for shared method variance in
longitudinal models is to allow the error variables of the same indi-
cator to correlate over time (so-called autocorrelated errors or corre-
lated uniquenesses [CU]; see Figure 2). This approach was proposed
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Figure 2. Latent state—trait model with correlated error variables for the same
indicators over time (correlated uniqueness model). Y;, denotes the ith observed
variable (indicator) measured at time #. 7 = latent trait factor; SR, = latent state
residual factor; \;, = trait factor loading; 8, = state residual factor loading.

> it

early in the literature on longitudinal structural equation models (e.g.,
Joreskog, 1979a, 1979b; Sorbom, 1975) and is known as the CU
approach in the context of MTMM analysis (Kenny, 1976; Marsh &
Grayson, 1995). Correlated error variables of the same indicators
account for the higher correlations of identical indicators over time
when shared indicator-specific variance is present. This approach to
modeling method effects has been applied to LST analyses, for
example, by Steyer et al. (1990), as well as Yasuda, Lawrenz, Van
Whitlock, Lubin, and Lei (2004).

Although straightforward, the CU approach has a number of
theoretical and practical limitations. One theoretical limitation is
that, as pointed out by a reviewer of this article, an LST model
with added correlations between the error variables can no longer
be considered an LST model according to Steyer et al.’s (1992,
1999) theoretical LST framework. In the presence of correlated
residuals, the initially well-defined latent variables in LST models
lose their clear meaning because person-specific method effects
become confounded with random measurement error. As ex-
plained in more detail in Appendix A, this is at odds with the
fundamental theoretical concepts of LST theory (Steyer et al.,
1992, 1999). A practical consequence is that CU models typically
lead to an underestimation of the reliabilities of the indicators
when method effects are present (e.g., Eid, Lischetzke, Nussbeck,
& Trierweiler, 2003) because they do not consider method effects
as part of the true score (systematic) variance of a variable but
confound reliable person-specific method effects with random
measurement error. In addition, method variance cannot be ex-
pressed as a separate variance component.

As pointed out by Lance, Noble, and Scullen (2002), another
problem is that CU models become less and less parsimonious as
the number of indicators increases because more and more error
correlations have to be estimated. Finally, an important limitation

of the CU approach is that it assumes method effects to be
orthogonal. This assumption is violated if two indicators share
method effects over and above one or more other indicators. This
will often be the case when structurally different methods are used
as indicators (e.g., other ratings may be more similar to each other
than to self-ratings). Conway, Lievens, Scullen, and Lance (2004)
showed that application of the CU approach can result in biased
estimates of convergent and discriminant validity in MTMM mod-
els when methods are actually correlated.

In sum, the CU approach treats method effects as a mere
nuisance and part of the error. From a psychometric point of view,
however, it seems to be desirable to separate all reliable sources of
variance from random measurement error, rather than treating
method effects as part of the error variable. In addition, in many
applications, the assumption of orthogonal method effects may not
be appropriate theoretically. Most importantly, an LST model with
correlated residuals is, strictly speaking, not a true LST model
from a theoretical perspective. Despite these limitations, the CU
approach continues to be widely used (Cole et al., 2007; Conway
et al., 2004), and recent methodological work has advocated its use
in longitudinal research (Cole & Maxwell, 2003), including LST
modeling (LaGrange & Cole, 2008).

The Orthogonal Method Factor Approach

Steyer et al. (1992) originally suggested accounting for method
effects in LST models by specifying as many method factors as
there are different indicators (a method factor for each indicator;
see Figure 3), thereby extending the basic LST measurement
equation as follows:

Figure 3. Latent state—trait model with orthogonal method factors. Y;,
denotes the ith observed variable (indicator) measured at time ¢. M, indi-
cates the method factor for indicator i. T = latent trait factor; SR, = latent
state residual factor; \;, = trait factor loading; 8,, = state residual factor

loading; vy;, = method factor loading.
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Y=o, + NI + 8,SR, + v;M; + €, (6)

where M; is a method factor common to all indicators with the
same index i and ‘y,, is the method factor loading. The method
factors are assumed to be uncorrelated (orthogonal methods [OM])
with each other and with all other latent and error variables in the
model. The factors M; have also been interpreted as specific traits,
as they represent the stable part of a specific indicator that is
unique to that indicator and not shared with the remaining indica-
tors (Steyer et al., 1992).

In contrast to the CU approach, the model in Equation 6 sepa-
rates stable indicator-specific (method) effects from random error.
It is more restrictive (and therefore more parsimonious) than the
CU model if there are more than three time points. The OM model
does not, however, solve the problem of potentially correlated
method effects, as it also assumes method effects to be orthogo-
nal.®

More importantly, the OM model suffers from similar theoret-
ical limitations as the CU model. Although the model had origi-
nally been presented by Steyer et al. (1992), strictly speaking, it
cannot be considered a true LST model according to Steyer et al.’s
LST framework.® The reason is that this framework requires all
latent variables to be explicitly defined in terms of conditional
expectations or well-defined functions of conditional expectations
of observed variables. The method factors M, however, cannot be
defined based on the conditional expectations considered in LST
theory (for details, see Appendix A, as well as Eid, 1996). As a
first consequence, the meaning of these factors is not entirely clear
(i.e., are they residuals with regard to the general trait factor? Do
they represent method effects or specific traits?), and their pres-
ence in an LST model also renders the meaning of the remaining,
formerly well-defined latent variables ambiguous.

A second consequence is that there is no solid theoretical basis
for assuming the method factors M, to be uncorrelated with each
other and with the remaining factors in the model. This assumption
is made merely for convenience and to enhance the identification
status of the model, but there are no clear psychometric reasons
why the factors should be uncorrelated. In addition to these con-
ceptual problems, the OM model often leads to an overfactoriza-
tion in practical applications (i.e., at least one of the method factors
often has no significant loadings or variance; e.g., Eid, 2000;
Steyer & Schmitt, 1994). This issue may be related to the weak
psychometric foundation of these factors. We consider this model
here despite these limitations given that, to date, it is the most
frequently used approach to deal with method effects in LST
analyses (29.09% of applications that we found in which method
effects were explicitly modeled used this approach).

The M — 1 Approach

Given the theoretical and empirical issues with the OM ap-
proach, Eid, Schneider, and Schwenkmezger (1999; Eid, 2000)
developed an approach that selects a gold standard or reference
indicator. The latent trait factor pertaining to the reference indica-
tor is chosen as a comparison standard, so that, for this indicator,
no method factor is included. Hence, the model specifies one
method factor less than methods/indicators used in the study and is
therefore referred to as the M — 1 approach (see Figure 4). Stable
method effects in the remaining indicators are examined relative to

Figure 4. Latent state—trait model with M — 1 correlated method factors.
Y,, denotes the ith observed variable (indicator) measured at time 7. 7R;
indicates the trait residual method factor for indicator i. In this example,
there is no method factor for the first indicator (reference indicator Y,,).
Consequently, the latent trait factor is specific to the reference indicator.
The method factors reflect the stable part in the non—reference indicators
(Y, and Y3,) that is not shared with the reference indicator. T = latent trait
factor; SR, = latent state residual factor; \;, = trait factor loading; 8, =
state residual factor loading; y;, = method factor loading.

the reference indicator. Therefore, all non-reference indicators
load onto (a) the reference trait factor and (b) a residual method
factor. All method factors can be correlated, but method factors are
by definition uncorrelated with the reference trait factor. Let r
denote the reference indicator. Then, the M — 1 model can be
written as follows:

Yy, =NT,+8,SR, + I(i # r)y,TR; + €, @)

where I(i # r) denotes an indicator variable, which has the value
1if i # rand the value O if i = r. We indicate the reference trait
factor as T, to make clear that this factor is not a common trait
factor in this approach but is specific to the reference indicator. 7R,
indicates the method factor for a non—reference indicator i, i # r.
TR, here stands for trait residual for indicator i, as the method
factors in this model are defined as regression residuals with
regard to the reference trait factor 7, (see Appendix A, as well as
Eid et al., 1999, for the exact mathematical definitions). We chose

> We do not consider a model with M correlated method factors here
given that such models have been shown to suffer from severe conceptual
problems, as well as difficulties in identification, estimation, and interpre-
tation in the context of MTMM and LST analyses (see, e.g., Conway et al.,
2004; Grayson & Marsh, 1994; Kenny & Kashy, 1992; LaGrange & Cole,
2008; Marsh, 1989; Marsh & Bailey, 1991).

®The OM approach is no longer supported by Steyer and colleagues.
Instead, these authors now favor models in which method effects are
constructively defined as latent difference variables (Pohl & Steyer, 2010;
Pohl et al., 2008).
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the label TR, (rather than M;) to make the meaning of this method
factor as a trait residual clearer and to emphasize that these method
factors differ from the method factors M, in the OM approach.

Eid et al.’s (1999) approach has the advantage that all factors in
this approach are well-defined latent variables that are in line with
the core framework of LST theory. The method factors are defined
as linear regression residuals with respect to a reference latent trait
variable and therefore have a clear theoretical status and interpre-
tation: They represent that part of the trait variance in the non—
reference indicators that is not shared with the trait variance in the
reference indicator. Furthermore, due to the consideration of just
M — 1 method factors, an overfactorization is avoided. In addition,
this approach addresses the issue of potentially correlated method
effects as it allows method factors to be correlated.

A limitation of the M — 1 approach is that it requires the
selection of a reference indicator that serves as the comparison
standard (the first indicator in Figure 4). The selection of a refer-
ence or gold-standard indicator may not always be easy, particu-
larly when all items or scales are conceived of as equivalent (or
interchangeable). Furthermore, the specification with a reference
indicator implies that the latent trait factor in the model becomes
specific to the first indicator. That is, the latent trait factor is now
identical to the latent trait component pertaining to the first indi-
cator and no longer reflects a common latent trait factor (see
Appendix A). This implies that the trait factor is method-specific,
that is, it contains the stable method variance pertaining to the
reference variable (Geiser, Eid, & Nussbeck, 2008). The method
effects (or specific trait effects) are defined relative to a reference
trait variable. We return to these issues in the discussion, where we
provide detailed guidelines as to the choice of a reference indica-
tor/method when using this approach in LST analyses.

The Indicator-Specific Trait Factor Approach

The indicator-specific trait (IT) factor approach (see Figure 5)

Figure 5. Latent state—trait model with indicator-specific trait factors. Y,
denotes the ith observed variable (indicator) measured at time z. T; indicates
the trait factor for indicator i. SR, = latent state residual factor; \;, = trait
factor loading; 8, = state residual factor loading.

takes the stable idiosyncratic effects of each variable into account
by allowing each variable to load onto its own (indicator-specific)
trait factor 7; (Eid, 1996; Marsh & Grayson, 1994; Steyer et al.,
1999; for applications, see Bonnefon, Vautier, & Eid, 2007; Eid &
Diener, 2004):

Y=o, + N, + 8,5k, + &, (8)

The additional index 7 in 7; makes clear that the trait variable is
no longer a general trait factor but is specific to indicator 7 in this
model. All 7; factors can be correlated. The IT model has several
advantages. First, as in the M — 1 approach, all latent variables in
the IT model can be constructively defined based on the funda-
mental concepts of LST theory (see Appendix A). Second, neither
correlated errors nor additional method factors need to be speci-
fied. The degree of method-specificity is reflected in the magni-
tude of the correlations among the IT factors. In the case of perfect
unidimensionality of traits (no stable method effects), the popula-
tion correlations of the IT factors would be equal to 1, and the
model would reduce to the NM model (the LST model with a
general trait factor and no method factors; see Figure 1). Low
correlations among the IT factors indicate strong method effects
(i.e., the stable components of each indicator are only to a small
degree shared with the other indicators). As in the M — 1 ap-
proach, the trait factors are indicator-specific and therefore contain
the method-specific effects of their respective indicators.”

The model with IT factors most directly reflects the idea that
different indicators may represent different traits rather than the
exact same trait. This makes this model attractive especially in
cases where a researcher would a priori assume that indicators
represent distinct traits or facets of a broadly defined construct or
when different indicators represent different methods or raters,
each of which may capture different aspects of a construct. Al-
though allowing for IT factors, the model still assumes that dif-
ferent indicators measured at the same measurement occasion
share the same occasion-specific influences, an assumption that
may or may not be reasonable in practice—as is demonstrated in
one of the empirical applications below.

Differences in the Definition of Consistency:
Common, Unique, and Total Consistency

An important difference between the four models concerns
differences in the types of consistency coefficients available in
each model. Estimates of consistency are among the key parame-

7 One might be tempted to extend the model to separate common trait
effects from method-specific effects by specifying a second-order factor on
the basis of the IT factors. Such a model has been discussed by Marsh and
Grayson (1994) and applied by Schmukle and Egloff (2005). However, Eid
(1996) has shown that this extended model cannot be formulated on the
basis of the random experiment considered in LST theory. As a conse-
quence, the second-order factor as well as the first-order residual factors in
this model are not well-defined latent variables and have no clear psycho-
metric meaning. We therefore do not consider such a model here. A more
well-defined approach could, for example, define a common trait factor as
the average of the indicator-specific latent trait variables. A related ap-
proach has been discussed by Pohl and Steyer (2010) in the context of
MTMM analyses. However, this is not the central focus of the present
article, and we therefore do not consider this extension here.
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ters of interest in an LST analysis, as they inform us about the
degree to which indicators measure stable aspects of behavior (as
opposed to occasion-specific influences). Hence, it is useful for
researchers to know which types of consistency coefficients are
available in which approach and how these are correctly inter-
preted.

For LST analyses in general—and for the purpose of the present
study in particular—it is useful to consider three different types of
consistency coefficients: common consistency (CCO), unique consis-
tency (UCO), and total consistency (7CO).® Following Steyer et al.
(1992), we define CCO as that part of the variance of an indicator that
is stable over time and shared across indicators. We define UCO as
that part of the variance of an indicator that is stable over time but not
shared with other indicators® or a reference indicator. Finally, we
define 7CO as the sum of CCO and UCO. Hence, TCO represents the
total stable part of the variance of an indicator.

One aspect in the comparison of different approaches is to which
extent (and in which way) they allow defining and estimating CCO,
UCO, and TCO. This comparison is of interest because it (a) sheds
more light on conceptual differences between the four approaches in
general and (b) shows that the models differ in the composition and
meaning of these coefficients, as explained below.

The bottom portion of Table 1 shows the properties of these
three coefficients for each model. In the NM model, only CCO can
be defined, as the model assumes that indicators are homogeneous
and that there are no stable method effects over time. Hence, there
are no method factors, and CCO = TCO in this model. Note that
both coefficients might be biased in the NM model in practice if
stable indicator-specific method effects are actually present be-
cause the NM model does not account for these effects.

The CU approach allows defining CCO, but not UCO (and
consequently not 7CO). The reason is that in this model, stable
method effects are reflected in error correlations and are not
represented by latent method factors. Hence, no variance compo-
nent for unique consistency can be defined, and the total consis-
tency of an indicator cannot be estimated. Another consequence is
that the reliability of an indicator will be underestimated in the CU
model whenever stable method effects are present because UCO as
a reliable source of variance is not separated from error. The
underestimation of the reliability will increase as the amount of
stable method variance increases because more and more reliable
variance is treated as part of the error.

The OM approach allows calculating all three types of consis-
tency coefficients:

NVar
ccow,) =~ “((? ©)
_ yaVar(M)
ucowy,) = Var(y,) (10)
N2Var(T) + y2Var(M,
TCO(Y,) = — ar(?ar(y)ar( ):CCO(Y,-,)+UCO(Z,).

(1D

Eid et al.’s (1999) M — 1 approach also allows defining all three
types of consistency coefficients. However, these are defined dif-
ferently, and two of them have a different meaning than the
corresponding coefficients in the OM approach. We therefore

indicate these coefficients with an asterisk () to make clear that
they differ conceptually from the coefficients in Equations 9—11:

B NaVar(T,)
CCO(Y)* = Varv) (12)
. yiVar(TR;)
UCOWY,) = 1 # r)=y o (13)
NeVar(T,) + 1(i # r)y:Var(TR,)
Teow,) = Var(Y;)
= CCO(Y;,)* + UCO(Y;)*. (14)

CCO™ indicates the proportion of variance of an indicator that is
explained by the reference trait factor 7, (rather than by a common
trait factor as in the OM approach). For reference indicators, this
coefficient equals the total consistency (see Equation 14) because
there is no method factor for these indicators. UCO™ indicates that part
of the stable variance of an indicator that is not shared with the stable
variance of the reference indicators. This coefficient is only defined
for non-reference indicators. The total consistency, T7CO", has the
same meaning as (and is thus comparable to) 7CO in the OM
approach: It represents the total proportion of stable indicator vari-
ance.

In the IT model, CCO and UCO cannot be defined, as this model
contains neither common trait factors nor method factors. Hence,
only T7CO can be estimated, which, in this model, is given by

NVar(T)
Var(y,)

The definition of OSpe does not differ between the approaches.
Table 1 summarizes key properties of the four approaches.

rcow,) = 15)

Importance of Comparing Different Approaches

It is well known from the literature on MTMM analysis (e.g.,
Kenny & Kashy, 1992; Marsh, 1989; Widaman, 1985) that there
are theoretical differences between different approaches to mod-
eling method effects (Cole et al., 2007; Geiser et al., 2008, 2010;
Pohl, Steyer, & Kraus, 2008). Not all models lead to meaningful
and interpretable results in all applications (Marsh, 1989). There-
fore, it is critical that theoretical differences between models be
taken into account when selecting a model (Eid et al., 2008). In
addition, research on the performance of confirmatory factor mod-
els for MTMM data has shown that models with method factors
may show serious problems in convergence, estimation, and inter-

8 It should be noted that, as a consequence of the fact that only the NM,
M — 1, and IT models are LST models according Steyer et al.’s (1992)
framework, in a strict sense, the different types of consistency coefficients
presented here have a clear meaning only in these models, but not in the
CU and OM models.

9 The UCO coefficient has also been referred to as the method-specificity
coefficient in the LST literature (e.g., Eid et al., 1999; Steyer et al., 1992).
We prefer the term unique consistency coefficient because (a) this label
makes clear that this variance component reflects part of the stable variance
of an indicator and (b) occasion-specific (i.e., nonstable) method effects are
not captured by this coefficient.
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M orthogonal

r. CU = correlated uniqueness approach; OM

The index r denotes the reference indicator. I(i # r) is an indicator variable that has the value 1 if i # r and the value 0 if i =

Note.

M — 1 correlated method factor approach; IT = indicator-specific trait factor approach; CCO = common consistency coefficient; UCO = unique consistency

total consistency coefficient.

method factor approach; M — 1

coefficient; TCO

pretation (Marsh, 1989; Marsh & Bailey, 1991). LST models as
such are complex latent variable models in which each observed
variable loads onto two factors. Adding additional components
(e.g., method factors) to the model makes the model even more
complex and may lead to additional complications in estimation
and interpretation. Furthermore, different approaches may perform
differently under different conditions (e.g., small vs. large sample
sizes; high vs. low method-specificity). Knowledge about such
differences can increase the odds that an approach will perform
well in a particular application and can therefore help researchers to
successfully analyze their data. This is especially true given that many
LST applications use relatively small sample sizes (see Appendix B).
Finally, to our knowledge, it has not yet been studied to which extent
different approaches for dealing with method effects properly recover
the key parameters of interest in an LST analysis, namely, the con-
sistency, occasion-specificity, and reliability coefficients.

LaGrange and Cole (2008) recently studied the performance of
four different multimethod approaches in the so-called trait—state—
occasion (TSO) model (Cole et al., 2005). The TSO model is an
extension of the basic LST model that allows for autoregressive
components among the latent state residual factors. In their simu-
lation study, LaGrange and Cole considered four different ap-
proaches using a design with four time points and a sample size of
N = 500, respectively. On the basis of their results, they recom-
mended the CU and OM approaches.

Limitations of LaGrange and Cole’s (2008) study are that they
(a) did not systematically vary the level of method-specificity so
that it remains unclear whether their recommendations generalize
across different levels of method variance, (b) considered only one
sample size condition (N = 500), and (c) did not study the
performance of the IT model. A literature review of applications of
LST models (see Appendix B) revealed that sample sizes used in
LST studies vary widely (range N = 38 through N = 37,041). Not
all LST models may perform well, for example, at small sample
sizes. Furthermore, it can also be assumed that the amount of
method variance varies across studies. The amount of method
variance is an important factor in LST studies as some models can
theoretically be expected to show fewer problems at different
levels of method-specificity than others, as explained in detail
below. Furthermore, the IT model appears to be a promising
alternative to other approaches as it deals with indicator-specificity
in a straightforward way and is in line with LST theory.

Study 1: Simulation Study

The goal of the simulation study was to extend and increase the
generalizability of previous simulation work (LaGrange & Cole,
2008) by systematically varying (a) the amount of method variance
(unique consistency) and (b) the sample size. We deemed these
conditions of primary relevance for the following reasons. We
expected the amount of method variance to have a substantial
impact on model performance in some of the models. In particular,
we expected to see more problems at lower levels of method
variance in models that include method factors (the OM and M —
1 models). The reason is that the estimation of model parameters
related to method factors likely becomes more unstable when
method-specificity is low because method factor loadings and
method factor variances will be estimated to values that are rela-
tively close to zero in these cases. This may cause method factors
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to collapse, causing convergence problems, improper solutions,
and/or parameter bias. These problems were expected to be more
frequent at lower sample sizes that involve more sampling fluctu-
ations than larger samples.

An interesting question in this regard was whether the OM or
the M — 1 model would show a better relative performance under
conditions of low method-specificity. We expected the M — 1
model to perform better relative to the OM model because (a) the
M — 1 model uses fewer method factors and (b) the method factors
in the M — 1 model are clearly defined as trait residuals and are in
line with LST theory, whereas the theoretical status of the OM
method factors is less clear (see Appendix A). Problems related to
conditions of low method variance were expected to be less severe
for the NM, CU, and IT models because these models do not
include method factors that could become unstable or collapse
under conditions of low method variance.

Furthermore, we expected conditions of high method variance
(and low common consistency) to cause instability and estimation
problems primarily in the OM and CU models because (in contrast
to the M — 1 and IT models) these models assume common trait
factors. These common trait factors were expected to become
increasingly unstable as common consistency decreased and
method variance increased. Problems under conditions of high
method-specificity were also expected for the NM model, as this
model (a) also includes common trait factors and (b) does not
account for method effects at all and thus becomes increasingly
misspecified as the amount of method variance increases.

Finally, we expected the IT model to be least problematic
overall because it (a) contains only well-defined latent variables
and (b) captures method variance in terms of correlations between
IT variables. This model should work well whether method effects
are high or low because the trait factors in this model are indicator-
specific and will thus show substantial loadings whether different
indicators show low convergent validity (high method variance) or
high convergent validity (low method variance).

We also studied different sample size conditions in order to further
increase the generalizability of our simulation findings. Important
questions in this regard were, (a) What is the minimum required
sample size for the reliable application of different LST models, and
(b) which models perform well under which sample size conditions?

Method

Simulation design. We generated data based on the OM model
(see Figure 3). The OM model was used because (a) to date it
represents the most frequently used approach to deal with method
effects and (b) it easily allowed us to systematically vary the amount
of method variance. We specified six different conditions in which the
indicators contained different amounts of indicator-specific method
variance (from low to very high method-specificity): 5%, 10%, 20%,
25%, 35%, and 40%. Common trait variance was varied accordingly
with values of 45%, 40%, 30%, 25%, 15%, and 10%, so that methods
and trait variance would always make up 50% of the total indicator
variance. Hence, 50% of the indicator variance was considered to be
stable over time in each population model. The amounts of occasion-
specific variance and error variance of the indicators were held con-
stant at 30% and 20% in all conditions, respectively, so that indicator
reliability would equal .8. We studied 10 different sample size con-
ditions (Ns = 50, 100, 200, 235, 300, 400, 500, 700, 1,000, and

2,000). These sample size conditions represent the range of sample sizes
in the LST literature'® (see Appendix B). For each of the 6 (method
variance) X 10 (sample size) conditions, we generated 1,000 data sets,
assuming multivariate normality. Simulated data for all five models (NM,
CU, OM, M — 1, and IT) were generated and fit using the external Monte
Carlo function in Mplus (Muthén & Muthén, 1998-2006); subsequent
analyses of model parameters were performed in SAS.

Outcome variables. We studied the proportion of noncon-
verged and improper cases as well as parameter estimate bias for
all conditions. We counted a replication as nonconverged if a
solution could not be reached by Mplus after 1,000 iterations. All
converged solutions that produced warning messages about non-
positive definite residual or latent variable covariance matrices
were classified as improper cases.!' Parameter estimate bias was
examined for the consistency, occasion-specificity, and reliability
coefficients as defined above. Bias was calculated as (parameter
estimate — true population parameter)/true population parameter
and averaged across indicators.

Results

Model convergence. Figure 6A shows the proportion of non-
converged solutions across all conditions. Overall, convergence prob-
lems were mainly an issue at sample sizes below N = 300. The model
with the highest overall frequency of convergence problems was the
OM model. Convergence problems were largest for this model in the
two most extreme conditions (lowest and highest amounts of method
variance). The CU model showed a relatively high frequency of
convergence problems when method variance was large or moderate
but was well behaved when method variance was small. The M — 1
model showed some convergence problems when method effects
were small, whereas it showed few problems at conditions of mod-
erate to high method variance. The IT and NM models were least
problematic in terms of model convergence.

Improper solutions.  The vast majority of improper solutions
represented solutions with nonpositive definite residual covariance
matrices (i.e., negative residual variance estimates). Nonpositive
definite latent variable covariance matrices only occurred for the
IT model. Furthermore, they only occurred under conditions of
low method-specificity (5% or 10%) and small sample size (N =
100). This can be explained by the fact that for low method-
specificity, IT factors are strongly correlated. In small samples,
sampling fluctuations can cause some of the IT correlations to be
estimated to values close to (or even above) 1.0. In addition, linear
dependencies may arise due to high correlations, which can also
result in nonpositive definite latent variable covariance matrices.

' The condition with N = 235 was included because this represented the
median sample size found in our original literature review prior to con-
ducting the simulation study. After acceptance of this article, we updated
our literature review. The median sample size changed slightly to 249.

"' This criterion leads to a rather conservative estimate of improper
solutions because not all cases with nonpositive definite matrices are
actually associated with offending (i.e., out-of-range) parameter estimates
(e.g., negative variances). Sometimes, these messages are caused by linear
dependencies that do not lead to inadmissible parameter estimates. We
decided to use this strict criterion because researchers typically refuse to
interpret a solution that yields these types of warning messages.
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Figure 6. Nonconvergence and improper solutions in the simulation study. A: Proportion of nonconverged
replications. B: Proportion of improper solutions among converged replications. MV = method variance; TV =
trait variance; NM = no method factor; OM = orthogonal methods; CU = correlated uniqueness; M — 1 = M —

1 correlated method factors; IT = indicator-specific trait.
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Figure 6B presents the proportion of improper solutions for all
models across conditions. All models showed severe problems at the
lowest sample size of 50. For the higher sample size conditions, there
were differences between models as well as between conditions. The
highest proportion of improper solutions occurred for the NM model
at conditions of moderate to high method-specificity, whereas this
model was well behaved when method effects were small. For the
remaining models, improper solutions were common only at the
lower sample size conditions. The OM model generally produced a
high number of replications with improper parameter estimates, in
particular when either trait or method variance was small. The CU
model tended to show more improper estimates when method vari-
ance was large relative to trait variance and was well behaved other-
wise. In contrast, the M — 1 model showed more problems when

11

method variance was small (5%) and was unproblematic in the
remaining conditions. The IT model showed the lowest frequency of
improper solutions of all models, and it tended to show no improper
solutions at all for N = 200.

Parameter estimate bias. Average parameter estimate bias
was studied for the coefficients of consistency (as far as applica-
ble), occasion-specificity, and reliability. The bias averages are
presented for proper solutions only (the corresponding values for
all converged cases, including improper solutions, can be found in
the online supplemental material). In general, trends were similar
for all versus proper-only solutions, albeit bias was generally more
pronounced if improper cases were included.

Common consistency bias (see Figure 7A) was examined for the
NM, OM, and CU models only because CCO is not defined in
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the IT model and is defined relative to a comparison indicator in
the M — 1 model and thus is not directly comparable. CCO tended
to be strongly overestimated in the OM and CU models at lower
sample sizes when method variance was large (=35%). In the NM
model, strong bias occurred except when method variance was
small (5% or 10%). The direction of bias in the NM model was
inconsistent (the model sometimes over- and sometimes underes-
timated CCO). We therefore examined the distribution of param-
eter estimates in detail for this model for different conditions.

Figure 8 shows the distributions of the trait loading, state resid-
ual loading, and residual variance for the first indicator in the N =
400 condition (results were very similar across indicators and
sample sizes so that this example can be seen as representative). It
can be seen that as method-specificity increased, parameter esti-
mates in the NM model became increasingly dispersed and, for the
conditions with high method variance, followed bi- or trimodal
distributions, showing that parameter estimates were completely
unreliable for this model when method variance was moderate to
high.'* Given these extreme parameter distributions, average bias
estimates are not really meaningful for this model at moderate to
large method variance and explain the inconsistency in the direc-
tion of average bias.

Unique consistency bias (see Figure 7B) was examined for the
OM model only because UCO is not defined (or is defined differ-
ently) in the other models. UCO bias occurred mainly under
conditions of low method variance (5% and 10%), where UCO
tended to be overestimated, particularly in the 5% method variance
condition.

Total consistency bias was studied for the NM, OM, M — 1, and
IT models (see Figure 9A). The NM model showed strong bias for
moderate to high method variance, whereas bias in the OM,
M — 1, and IT models was relatively small (mostly below 10%).
We therefore also include a figure without the NM model to allow
for a more detailed comparison of the remaining models (see
Figure 9B). There was a consistent tendency across conditions for
the OM model to show a larger positive bias than the M — 1 and
IT models. Besides the NM model, the OM model was the only
model that showed a bias above 10% for some of the conditions.
Bias in the OM model was especially pronounced in the conditions
with high method (and low trait) variance.

Occasion-specificity bias (see Figure 10A for all models and
Figure 10B without NM) was examined for all models and was
below 10% for all conditions and all models except the NM model.
The NM model showed large bias in all conditions except when
method variance was as low as 5% or 10%. However, average bias
and direction of bias in the NM model have to be interpreted with
caution given the bimodal parameter distributions in the high
method-specificity conditions (see Figure 8).

Reliability bias (see Figure 11) was also studied for all
models. It can be seen that reliability was properly estimated by
all models under all conditions except the NM and CU models,
both of which consistently underestimated reliability. Underes-
timation in the CU model increased systematically as method
variance increased, with the strongest bias of —50% found for
the highest (40%) method variance condition. Again, given the
bimodal distribution of the residual variance estimates in the
NM model for moderate to high levels of method variance (see
Figure 8), the average bias estimates are not really meaningful
for this model.

Distribution of First Trait Loading for the N=400 Condition
MV=.05, TV=.45 MV=.10, TV=.40 MV=.20, V=30

40+

30] )
20
10

MV=.25,TV=.25 MV=.35, TV=.15 MV=.40,TV=.10

Percent

40
304

204

104 : f i
10 -05 00 05 10

-0 -05 00 05 10 <10 05 00 05 10

Distribution of First State Residual Loading for the N=400 Condition

MV=.05, TV=45 MV=10,TV=.40 MV=20, TV=30

40+
1 k H
i f H
20 1 H ;
i | d
- f i i
& 0 d d i
3
g'_» 60 MV=.25,TV=.25 MV=.35, TV=.15 MV=.40,TV=.10
40
20 N :
0 T T T T T T T T T T
-0.5 0.0 -05 00 05 1.0 -0.5 0.0 05 1.0
Distribution of First Residual Variance for the N=400 Condition
MV=.05, TV=.45 MV=.10, TV=.40 MV=.20,TV=30
40 V ' )
30+
20
104
’E MV=.25,Tv=.25 MV=.35, TV=.15 MV=.40,TV=10
40 ' ' '
30 : ' :
20 E E
104 E :
oL i, | | i, |

-05 0.0 05 10 -05 00 05 10 -05 0.0 05 1.0

Figure 8. Distribution of the trait loading, state residual loading, and
residual variance of the first indicator in the no method factor model for the
N = 400 condition. The vertical dotted line indicates the true population
value. MV = method variance; TV = trait variance.

2 We suspect that the mixture distributions of the parameter estimates
seen at high levels of method variance indicate that the estimation routine
attempts to compensate for the extreme misspecification in different ways
across replications, sometimes over- and sometimes underestimating con-
sistency.
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Figure 9. Mean total consistency bias in the simulation study. A: All models. B: Without the NM model.

MV = method variance; TV = trait variance; NM = no method factor; OM = orthogonal methods; M — 1

M — 1 correlated method factors; IT = indicator-specific trait.

Discussion

The results of the simulation study were well in line with our
theoretical expectations. The overall best performing model was
the IT model, with the fewest problems in terms of convergence,
improper solutions, and parameter bias. The second best model
was the M — 1 model, which, as expected, only showed some
problems at low samples sizes when method effects were very
small. The CU model performed reasonably well in general but
showed problems when method effects were strong (and trait
effects weak). Furthermore, as theoretically expected, the CU
model systematically underestimated the reliabilities of the indi-
cators across all conditions. The OM model consistently performed
worse than all other models (except for the NM model), which may
be surprising because it represents the data-generating model. As

predicted, it showed the most problems when method variance was
either very low or very high. We suspect that these conditions
cause instability in the model that lead to various kinds of prob-
lems. The NM model, which ignores method effects and thus
becomes increasingly misspecified as the amount of method vari-
ance increases, performed worst in terms of improper solutions and
bias. This model produced completely unreliable parameter esti-
mates when method effects were moderate to large.

As shown by our literature review (see Appendix B), small sample
sizes are quite common in LST research. It is therefore of interest
which sample size can be seen as large enough to use the models
discussed here. Our simulation suggests that samples sizes as small as
N = 50 may not be appropriate for LST analyses in general, at least
not under the conditions studied here, as most models showed severe
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Figure 10. Mean occasion-specificity bias in the simulation study. A: All models. B: Without the NM model.

MV = method variance; TV = trait variance; NM

= no method factor; OM = orthogonal methods; CU =

correlated uniqueness; M — 1 = M — 1 correlated method factors; IT = indicator-specific trait.

estimation problems under this condition. On the other hand, there
were many situations in which models tended to perform well at a
sample size as small as N = 100. This was particularly true for the IT
model. For most other models that account for method effects, prob-
lems tended to vanish or were at least significantly reduced when
sample sizes were moderate to large, say N = 300.

Study 2: Applied Examples

We present real data applications to two method types: items
and raters. The first data set uses multiple, supposedly homoge-
neous items as indicators. For this case, we expect relatively minor
yet nonnegligible method effects. The second data example uses
ratings from multiple sources. Given that multiple reporters often

show rather low convergent validity even when they provide
responses on the same measure (e.g., Geiser et al., 2010), we
expected method effects to be rather strong in this example. Both
studies can be seen as typical examples of LST applications in
terms of sample size, number of waves, and number of indicators.
These applications are of interest for three reasons: They (a) allow
us to examine the models’ behavior in practice under two different
but common (and natural) conditions (homogeneous vs. heteroge-
neous indicators), (b) illustrate the practical use and meaning of
different types of consistency coefficients in different models, and
(c) demonstrate the need for more complex models in cases where
it may not be reasonable to assume homogeneity of occasion-
specific effects across indicators (see Data Example 2).
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Mean reliability bias in the simulation study. MV = method variance; TV = trait variance; NM =
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factors; IT = indicator-specific trait.

Method

Data Example 1: Multiple items. In our first example, we
analyzed data from 360 firefighters taken from a larger health
promotion study (Moe et al., 2002). Data for this study were
collected annually for 6 years; we used the first three waves of data
in our example. For our analyses, we selected three items of the
General Health subscale of the Short-Form General Health Survey
(Ware, Snow, Kosinski, & Gandek, 1993)." Ttem 1 asked respon-
dents to give a broad assessment of their current state of health (“In
general, would you say your health is”) on a scale of 1 (Excellent)
to 5 (Poor). Item 2 (“I am as healthy as anybody I know”) and Item
3 (“My health is excellent”) were slightly more specific and were
scored on a scale of 1 (Definitely True) to 5 (Definitely False). We
chose these three items for two reasons. First, they were each
positively worded and were rather homogeneous in terms of con-
tent. Hence, these items allowed us to demonstrate that even in this
case, method effects may be nonnegligible. Second, despite the
apparent homogeneity of the items, Item 1 can be seen as a marker
variable for measuring general health. Furthermore, Item 1 is
measured on a different response scale than the two other items.
This made it easy for us to select this item as a reference indicator
in the application of the M — 1 approach to these data. Substan-
tively, these data are interesting for an LST analysis because these
analyses allow us to find out to which degree the rating of per-
ceived general health depends on momentary (occasion-specific)
influences versus a stable person-specific level.

Data Example 2: Multiple raters. Data for this example
come from the first three waves of the Adult and Family Devel-
opment Project (Chassin, Rogosch, & Barrera, 1991), a longitudi-
nal study of the intergenerational effects of familial alcoholism.
Four hundred fifty-four children (mean age = 12.7 years), along
with each of their mothers and fathers, provided annual, in-person
reports of the target children’s externalizing symptomatology us-
ing the Child Behavior Checklist (for details of scoring, see

Achenbach & Edelbrock, 1981, or Chassin et al., 1991). The
current analyses are based on 294 complete cases for which self-,
mother, and father reports on the same 22 items were available. An
interesting substantive question that can be answered by LST
analysis is whether externalizing problem behavior is best con-
ceived of as a stable trait or whether it is more situation dependent.

Results

Goodness of fit. We fit all five models to each data set.
Mplus scripts for all analyses are available from the online sup-
plemental material. Table 2 shows the goodness-of-fit statistics for
all models. It can be seen that in both applications, all models that
take method effects into account fit the data well. In contrast, the
NM model showed a very bad fit in Application 1. In Application
2, the NM model did not even converge to a solution after 1,000
iterations.'* Although we consider only two applications here,
these findings demonstrate once again that method effects are an
important issue in LST models, even when indicators are suppos-
edly unidimensional items (as in Application 1). Inspection of the
descriptive model comparison indices (the Akaike and Bayesian
information criteria) revealed that although these indices are close
for all models, the IT model showed the best relative fit in both
applications. This result is interesting given that this model also
showed the best performance in our simulation study.

'3 Jtem-level analyses should in general take the ordinal scale level of
the measures into account. For the sake of simplicity and to save space, we
treated the indicators as continuous in the present application. Nonetheless,
we urge researchers to use appropriate estimation methods for ordinal
variables in actual substantive applications at the item level (see Eid, 1996,
as well as Eid & Hoffmann, 1998, for a detailed description of LST models
for ordinal variables).

'* The nonconvergence of this model is likely due to strong method
effects in this application due to the use of multiple reporters.
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Table 2

Goodness of Fit Indices for Different Latent State—Trait Models Applied to Real Data

General health (N = 360)

Child externalizing problems (N = 294)

Model x> (df) p(x») RMSEA SRMR TLI  AIC

BIC X2 (df) p(x») RMSEA SRMR TLI  AIC BIC

NM 102.77 (18)  <.001 11 .04 090 6,656
CU 5.62(9) 78 .00 .01 1.01 6,577
OM 5.62(9) 18 .00 .01 1.01 6,577
M—1 13.15 (11) 28 .02 .02 1.00 6,581
IT 16.94 (15) 32 .02 .02 1.00 6,577

6,796 — — — — — — —

6,752  14.37(9) 11 .05 .02 098  —259 -93
6,752  14.37(9) 11 .05 .02 098  —259 -93
6,748  16.76 (11) A2 .04 .02 099 —-261 —102
6,728  20.01 (15) 17 .03 .02 099 —265 —122

Note. The CU and OM models are equivalent models for a 3 (indicators) X 3 (time points) design and therefore show an identical fit in these applications.
Dashes indicate that there was no convergence after 1,000 iterations. NM = model with no method factors; CU = correlated uniqueness approach; OM =
M orthogonal method factor approach; M — 1 = M — 1 correlated method factor approach; IT = indicator-specific trait factor approach; RMSEA =
root-mean-square error of approximation; SRMR = standardized root-mean-square residual; TLI = Tucker-Lewis index; AIC = Akaike information

criterion; BIC = Bayesian information criterion.

Variance components. Tables 3 and 4 provide the estimated
consistency, occasion-specificity, and reliability coefficients in
each model. As can be seen, nonnegligible method effects oc-
curred in both studies, although, as expected, method effects were
stronger in the multirater data example. This can be seen most
easily from the higher UCO coefficients in the OM and M — 1
models in the second application. In the CU model, the higher
method-specificity is reflected in higher error correlations in the
multirater example (47 = r = .69) compared to the multi-item
application (.03 = r = .39; none of the error correlations for Item
3 were significant at an alpha level of .05). The IT model depicts
method effects in terms of correlations between the ITs. In the
multirater example, these correlations were lower (.37 = r = .51)
than in the multi-item application (.73 = r = .89), showing once
again that method-specificity was stronger in the multirater case.

Note that the estimates of common and unique consistency in
the OM model differ from the corresponding estimates in the M —
1 model. This is expected given that these coefficients are defined
relative to a reference indicator in the M — 1 approach and
consequently also have a different interpretation: CCO™ represents
the amount of stable variance shared with the reference indicator,
whereas UCO™ represents the amount of stable variance not shared
with the reference indicator. Consequently, these estimates cannot
be directly compared (although T7CO, OSpe, and Rel can).

Discussion

Two specific issues that occurred in the application of the OM
model are particularly noteworthy. In the first application, the
method factor for the third item (“My health is excellent”) had no
significant variance, and none of the loadings on this factor was
statistically significant. Hence, in this application, one method
factor seemed to be redundant. As mentioned above, this problem
is not uncommon in practical applications of this model. In the
application to the multirater data, all method factors were signif-
icant in the OM model. However, the residual variance of the
father report score at Time 1 was estimated to be zero, and
consequently, the reliability was estimated to be 1.00 for this
indicator. This can be seen as a close-to-improper solution, as it
seems unrealistic to assume perfect reliability of father reports of
externalizing problem behavior.

The CU model, which in this application is statistically equiv-
alent to the OM model, showed a similar issue in the first appli-
cation: Neither one of the error correlations related to Item 3 was
statistically significantly different from zero. Furthermore, the CU
model consistently provided unrealistically low reliability esti-
mates compared to the remaining models, especially in the multi-
rater case.

Occasion-specific effects were estimated to be low by all mod-
els in both applications. In the multi-item application, only the
third item showed a substantial amount of occasion-specific vari-
ance (OSpe = .23 in all models at all time points), whereas
especially Item 1 did not seem to be prone to occasion-specific
influences (OSpe = .11). This makes sense theoretically as the
first two items (especially Item 1) refer more to the general health
status (and thus should be less influenced by occasion-specific
deviations from the general health status of a person), whereas, for
Item 3, it is less clear whether it refers to a momentary or general
evaluation of perceived health.

Method-specific occasion-specificity. An interesting result
that requires our specific attention is that in the multirater
application, all models indicated that occasion-specific effects
were small (mean OSpe = .08, range: .01 = OSpe = .23)and
even statistically nonsignificant for a number of indicators.
Furthermore, none of the occasion-specific factors had a sig-
nificant variance estimate. This result is surprising as one
would theoretically expect that self- and parent reports of
externalizing problem behaviors show a nontrivial amount of
occasion-specific variance. Given that all models fit the data
well, one might be tempted to conclude that this expectation is
disconfirmed and that occasion-specific effects are indeed neg-
ligible—suggesting that the self- and parent report measures of
externalizing problem behavior are for the most part trait mea-
sures. However, this would be an erroneous conclusion. Con-
ventional LST models assume that occasion-specific effects are
unidimensional across all indicators measured at the same time
point. In our example, this implies that the situation and its
impact on the measurements of externalizing behavior are iden-
tical for self-, mother, and father reports.

The assumption of homogeneous occasion-specific effects is rea-
sonable in many cases when indicators are homogeneous (e.g., tau-
equivalent scales or items obtained from a single rater). It is likely
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Table 3
Estimated Variance Components for Different Latent State-Trait Models Applied to the Health
Data (N = 360)

Model cco Uco TCO OSpe Rel
NM
Item 1, Time 1 .56 — .56 .03* .60
Item 2, Time 1 27 — 27 A7 44
Item 3, Time 1 47 — 47 407 .88
Item 1, Time 2 74 — 74 .02% .76
Item 2, Time 2 27 — 27 122 .39
Item 3, Time 2 .52 — .52 .34 .86
Item 1, Time 3 .61 — .61 .05 .66
Item 2, Time 3 .19 — .19 .20 .39
Item 3, Time 3 .38 — .38 .26 .64
CU
Item 1, Time 1 44 — — .08 52
Item 2, Time 1 28 — — 18 46
Item 3, Time 1 52 — — .30 .82
Item 1, Time 2 .67 — — .03* .69
Item 2, Time 2 .30 — — 107 .40
Item 3, Time 2 .60 — — 23 .83
Item 1, Time 3 46 — — 11 .57
Item 2, Time 3 .19 — — 18 .37
Item 3, Time 3 .40 — — .26 .66
oM
Item 1, Time 1 44 .16 .59 .08 .68
Item 2, Time 1 28 15 43 18 .61
Item 3, Time 1 52 .04° 55 30 .86
Item 1, Time 2 .67 .07 74 .03* 7
Item 2, Time 2 .30 12 42 .10* .52
Item 3, Time 2 .60 .00° .60 23 .83
Item 1, Time 3 46 .20 .66 11 77
Item 2, Time 3 .19 .14 .34 18 .52
Item 3, Time 3 40 .04° 44 26 .70
M — 1°¢
Item 1, Time 1 .58 — .58 .08 .66
Item 2, Time 1 234 254 48 .16 .64
Item 3, Time 1 424 174 .59 26 .86
Item 1, Time 2 74 — 74 .05% 79
Item 2, Time 2 244 164 39 13° 52
Item 3, Time 2 474 074 .54 .28 .82
Item 1, Time 3 .63 — .63 .09 72
Item 2, Time 3 164 174 .33 17 .50
Item 3, Time 3 33¢ 134 45 24 .69
1T
Item 1, Time 1 — — .58 .07 .65
Item 2, Time 1 — — 45 17 .62
Item 3, Time 1 — — .56 .28 .83
Item 1, Time 2 — — 73 .06 .79
Item 2, Time 2 — — 42 12 54
Item 3, Time 2 — — .56 27 .83
Item 1, Time 3 — — .63 .08 72
Item 2, Time 3 — — .32 18 .50
Item 3, Time 3 — — 44 23 .68

Note.  The items were taken from the Short-Form General Health Survey scale (Ware, Snow, Kosinski, &
Gandek, 1993). Item 1: “In general, would you say your health is. . . (1 = excellent, 2 = very good, 3 = good,
4 = fair, 5 = poor)”; Item 2: “I am as healthy as anybody I know”; Item 3: “My health is excellent”. Items 2
and 3 were scored on the following 5-point scale: 1 = definitely true, 2 = mostly true, 3 = don’t know, 4 =
mostly false, 5 = definitely false. Dashes indicate that a coefficient is not applicable. 7CO and OSpe do not
always add up to Rel due to rounding errors. NM = model with no method factors; CU = correlated uniqueness
approach; OM = M orthogonal method factor approach; M — 1 = M — 1 correlated method factor approach;
IT = indicator-specific trait factor approach; CCO = common consistency; UCO = unique consistency; TCO =
total consistency; OSpe = occasion-specificity; Rel = reliability.

2 The variance of the corresponding state residual factor was nonsignificant (p = .08). ° The variance of the
corresponding method factor was nonsignificant (p > .82). “Item 1 served as the reference method in this
model. “To be interpreted relative to the reference method.
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Table 4
Estimated Variance Components for Different Latent State-Trait Models Applied to the
Externalizing Problem Behavior Data (N = 294)

Model cco uco TCO OSpe Rel
CU
Child report, Time 1 21 — — .02% 23
Mother report, Time 1 32 — — .02 34
Father report, Time 1 34 — — 2330 .57
Child report, Time 2 18 — — A7 35
Mother report, Time 2 .36 — — .03* .39
Father report, Time 2 38 — — .03 41
Child report, Time 3 12 — — .04* .16
Mother report, Time 3 34 — — 13 48
Father report, Time 3 .39 — — .03* 42
OM
Child report, Time 1 21 .36 .56 .02% .58
Mother report, Time 1 32 34 .66 .02 .68
Father report, Time 1 340 43° 770 2330 1.00°
Child report, Time 2 18 52 .70 17t .87
Mother report, Time 2 .36 .38 74 .03* a7
Father report, Time 2 38 27 .65 .03 .68
Child report, Time 3 12 41 .53 .04 57
Mother report, Time 3 34 .29 .64 13 77
Father report, Time 3 .39 28 .67 .03 .70
M —1°¢
Child report, Time 1 .56 — .56 .02 .58
Mother report, Time 1 11 564 67 012 .68
Father report, Time 1 .09¢ .65¢ 74 23% .97
Child report, Time 2 .70 — .70 13 .83
Mother report, Time 2 104 644 74 .03* 77
Father report, Time 2 .10¢ 564 .66 032 .69
Child report, Time 3 52 — .52 .03 .55
Mother report, Time 3 .07¢ 574 64 208 .87
Father report, Time 3 124 554 .67 .02% .70
IT
Child report, Time 1 — — 57 .03 .60
Mother report, Time 1 — — 67 .02 .68
Father report, Time 1 — — 73 .16* .89
Child report, Time 2 — — .70 13 .83
Mother report, Time 2 — — 74 .03 8
Father report, Time 2 — — .66 .03 .69
Child report, Time 3 — — .52 .03 .56
Mother report, Time 3 — — .64 15 79
Father report, Time 3 — — .68 .03 1

Note. Sum scores of the Externalizing Problem Behavior Scale of the Child Behavior Checklist (Achenbach
& Edelbrock, 1981) served as indicators. The model without method factors did not converge for these data.
Dashes indicate that a coefficient is not applicable. 7CO and OSpe do not always add up to Rel due to rounding
errors. NM = model with no method factors; CU = correlated uniqueness approach; OM = M orthogonal
method factor approach; M — 1 = M — 1 correlated method factor approach; IT = indicator-specific trait factor
approach; CCO = common consistency; UCO = unique consistency; 7CO = total consistency; OSpe =
occasion-specificity; Rel = reliability.

2 The variances of all state residual factors were nonsignificant (p = .28). °In this model, the residual variance of
the father report indicator at time 1 was estimated to be zero. © Child report served as reference method in this
model. ¢ To be interpreted relative to the reference method (child report).

violated, however, when indicators represent distinct methods (e.g.,
different raters, as in our second application). Different raters are
likely in different (inner or outer) situations even if their ratings are
collected at exactly the same time point. Consequently, standard LST
models confound method-specific occasion-specific influences with
measurement error. Thus, they may strongly underestimate the
amount of occasion-specific variance when the scores of multiple
raters are used as indicators of latent trait and latent state residual
variables. An additional consequence is that the reliabilities of the
indicators are likely underestimated, as rater-specific occasion-

specific influences become part of the error variable (when in fact
they should be considered part of the true variance of the indicators).

The IT model for modeling method-specific occasion-
specificity.  To illustrate the issue of method-specific occasion-
specificity, we fit an additional, extended IT model to the exter-
nalizing problem behavior data (illustrated for just two methods in
Figure 12). In contrast to the conventional IT model, this LST
model used multiple indicators per rater (i.e., three indicators for
child ratings, three indicators for mothers, and three indicators for
fathers at each time point). Although the ratings of children,
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Method 2

Method 1

Figure 12. Indicator-specific trait model for two methods. This model
includes multiple indicators Y,,,, indicator-specific trait factors 7}, and
state residual factors SR, separately for each method. This accounts for the
fact that occasion-specific effects may not generalize perfectly across
different methods. All trait factors can be correlated. Occasion-specific
factors pertaining to different methods at the same measurement occasion
can also be correlated, indicating the generalizability of occasion-specific
effects across different methods. \;, = trait factor loading; 3, = state
residual factor loading.

mothers, and fathers were still modeled simultaneously, a separate
IT structure was assumed for each type of rater. The advantage of
this model is that occasion-specific effects can be modeled as
being rater specific, thereby avoiding an underestimation of the
true amount of occasion-specific variance. The rater-specific
occasion-specific residual factors measured at the same measure-
ment occasion can be correlated across raters. These correlations
indicate to which degree occasion-specific effects generalize
across different raters. Only if these correlations equal one could
we assume occasion-specific effects to be homogeneous across
raters—as is done in the conventional LST model with just a single
indicator per rater."”

In our example, we actually used an extended variant of the
model shown in Figure 12 that included three (instead of just two)
methods to model child, mother, and father ratings simultaneously.
Hence, there were separate trait and separate occasion-specific
residual factors for each type of rater. To fit this model to the
externalizing problem behavior data set, we constructed three item
parcels (instead of just one single score) for each rater. This was
done by randomly assigning the 22 items to three sets and then
calculating the mean of the items in each item set, respectively.
Parcels consisted of identical items across raters and time points.

The extended IT model with multiple indicators for each type of
rater also fit the data well, x*(252) = 341.44, p < .01, Tucker-
Lewis index = .98, root-mean-square error of approximation =
.04, standardized root-mean-square residual = .04. In line with
theoretical predictions, it turned out that, regardless of the type of
rater, all occasion-specific factors had highly significant variances.
Furthermore, most indicators did show a substantial amount of
occasion-specific variance (mean OSpe = .2, range:

.03 = OSpe = .44). These values are substantially higher than
the occasion-specificities estimated in each of the conventional
LST models. This is even more impressive if one takes into
account that this model used parcels (i.e., test thirds of the initial
scale) so that each indicator represented only one third of the full
scale. Furthermore, reliability estimates (mean Rel = .78, range: .6
= Rel = .95) also were higher in this model than reliabilities in
the conventional IT model (mean Rel = .72, range: .56 = Rel
= .89), although each indicator represented only a third of the full
scale. The occasion-specificities and reliabilities of the full scales
are thus strongly underestimated by the conventional LST analysis
with single indicators per rater.

In addition, the latent correlations between occasion-specific fac-
tors pertaining to different methods were only of small to moderate
size (11 = r = .43), and two of them were not statistically signifi-
cant (p = .22). These findings clearly demonstrate that unidimen-
sionality of occasion-specific effects is not a reasonable assumption in
this example, as all of the correlations between occasion-specific
factors are far below 1.00. Only the more complex model with
multiple indicators per each rater could thus adequately reflect the
degree of occasion-specificity and reliability of these data.

Overall Discussion

Our review of the diverse literature of LST applications revealed
that nearly 80% of applications used one or more of the four
approaches discussed in this article to account for method ef-
fects.'® The largest proportion of LST applications (29.09%) to
date have used the OM approach originally proposed by Steyer et
al. (1992) and recently advocated by LaGrange and Cole (2008).
Our simulation study and applications showed, however, that this
approach may not always be the best choice. In particular, this
model performed rather poorly in our simulation study under
conditions where method effects accounted for either a small
(5%—-10%) or a large (35%—40%) portion of the total indicator
variance, and estimates based on this model also raised concerns as
to the adequacy of this model in our applications to actual psy-
chological data. In summary, the model appears to be rather
unstable at conditions of high or low method-specificity, at least at
small to moderate sample sizes (up to about 500 for some condi-
tions). The apparent instability of the OM model under conditions
of low method variance and low trait variance is likely caused by
method and trait factors becoming weakly identified and thus
unstable in those situations.

This finding has practical implications, given that many (if not
most) empirical applications have to deal with only a small amount

'3 Courvoisier (2006), as well as Courvoisier et al. (2008), also proposed
a multiple-indicator LST approach. Courvoisier et al.’s approach differs
from the approach presented here in that their approach contrasts different
methods against a reference method. The purpose of the model presented
here is simply to illustrate that conventional LST models may be inappro-
priate for modeling occasion-specific effects if different indicators repre-
sent different methods that do not share the exact same occasion-specific
effects.

'¢ Interestingly, it appears from our review that almost all applications
that did not account for method effects used physiological measures such
as cortisol level as indicators for which method effects did not seem to play
a role.
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of method-specific variance. This is because users oftentimes
construct their measures (e.g., test halves) in such a way as to
maximize their homogeneity. Of course, homogeneity of indica-
tors definitely is a desirable feature, and we encourage authors to
select unidimensional measures. Nonetheless, our literature review
suggests that even when test halves were designed to be perfectly
homogeneous, method effects still occurred and had to be ac-
counted for in the majority of cases. In addition, rather weak
method effects are also expected in designs with long lags between
the measurements occasions. The OM approach seems to be prone
to estimation problems in these cases and may not return reliable
parameter estimates.

In addition, it is frequently observed in empirical applications (and
was again observed in one of the applications reported in this article)
that one of the method factors in the OM model collapses and returns
no significant variance or loadings (e.g., Schermelleh-Engel et al.,
2004; Steyer & Schmitt, 1994). We may speculate that this result is
more likely to occur in cases where method effects are modest, as this
condition may lead to lower stability in the methods-related estimates
in this model and may even cause problems of empirical underiden-
tification. Such empirical underidentification problems may be the
cause of the high rate of nonconverged solutions we identified for this
model in our simulation study—despite the fact that the model was
used to generate the data.

An important practical question is, Should researchers interpret
the results if one of the method factors in the OM model vanishes
empirically, and if so, how? Should one assume that the corre-
sponding indicators are free of method-specific influences? Should
those indicators be seen as gold-standard indicators, as in the
M — 1 approach? We doubt that this would be a sensible inter-
pretation, given that the lack of a method factor for a particular set
of indicators is empirically driven rather than theoretically well
founded and might just represent a chance finding. In addition, this
result changes the interpretation of the model parameters in a
significant way: If one method factor disappears, then the trait
factor in the model no longer is interpretable as a general trait that
is common to all indicators but actually becomes specific to the set
of indicators that have no significant method factor, as in the
M — 1 approach. Hence, researchers need to be cautious in their
interpretation of the parameters of this model in these cases, as the
interpretation will be different from their original expectation.

In summary, we cannot unanimously recommend the OM model
for LST applications. One reason for the frequent successful use of
this approach in the literature may be that many applications used
only two measurement occasions. For such models to be identified,
all loadings on the method factors must be fixed, which may
increase the model’s stability.

Another popular approach studied in this article is the CU model
that allows for correlated errors of the same indicators over time.
This approach has generally been found to perform well in the
context of MTMM research (e.g., Marsh & Bailey, 1991) and is
widely used in longitudinal studies. LaGrange and Cole (2008)
also recommended this approach in the context of LST modeling.
The results of our study are somewhat mixed for this model.
Although overall, the CU approach performed better than the OM
approach, the CU model did not perform well under conditions
with rather large method effects, at least for small to moderate
sample sizes.

In addition, the CU approach is plagued by a number of theoretical
and conceptual problems, some of which are well known (e.g., Lance
et al., 2002). The CU approach confounds stable indicator-specific
variance (i.e., unique consistency) with random measurement error. In
the present study, this was shown by downward-biased estimates of
indicator reliabilities in all simulation conditions as well as both real
data applications. As theoretically expected, the underestimation of
the reliabilities systematically increased with increasing method vari-
ance. Hence, the CU model does not allow one to properly estimate
indicator reliabilities, and it also does not allow one to estimate the
total consistency of an indicator, given that the unique consistency is
represented by error covariances (rather than a latent variable). This is
troublesome, given that researchers are often interested in proper
estimates of the reliabilities and total consistencies of their indicators.
These conceptual issues make the CU model a less attractive option
for LST analyses from a psychometric and practical point of view.

In addition to these issues, we note that the CU approach
appears to be prone to similar interpretation problems as the OM
approach when method effects are weak. With small method
effects, the error correlations associated with one set of indicators
may be close to zero and nonsignificant—as was the case in our
first empirical application. As has been shown by Cole et al.
(2007), failure to include all relevant error correlations in a model
leads to a change in the interpretation of the factor that is supposed
to be an underlying general factor across all items. With regard to
the CU model, this again means that the trait factor becomes
specific to those indicators with no significant error correlations—
which is very likely not in line with what the researcher intended.

Finally and probably most importantly, both the OM and CU
models should be used with caution because they do not belong to
the family of true LST models in the sense that the latent variables
in these models cannot be derived based on the core LST frame-
work provided by Steyer et al. (1992, 1999). Only in the NM,
M — 1, and IT models are the latent variables well-defined on the
basis of the fundamental latent variables of LST theory.

In summary, we recommend that the CU model be used only
when the M — 1 approach or the IT model to be discussed next do
not fit the data. This may be the case, for example, when method
effects do not follow a unidimensional structure across time. The
CU model might help as a last resort in these cases, as it does not
require method effects to be unidimensional. On the other hand,
the CU model makes the assumption that method effects are
orthogonal, which may also be violated in practice. Hence, re-
searchers need to carefully consider whether this approach is
appropriate for their data.

Our findings suggest that the M — 1 and the IT approach are
more theoretically sound, are less prone to empirical problems, and
may be more broadly applicable than the OM and CU approaches.
Both models performed well across most conditions studied in our
simulation as well as in both real data applications, although the
M — 1 model showed some problems at small sample sizes when
the amount of method variance was small. From a theoretical point
of view, the M — 1 approach seems to be most useful when a
researcher can identify one indicator as clearly outstanding relative
to the remaining indicators. This could, for instance, be a scale that
researchers in the field agree upon as a gold-standard measure, an
item that is theoretically most appropriate for measuring the con-
struct, or a marker variable that has proven to be a particularly
good indicator in prior studies. For example, in our application to
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the firefighter data, there were clear substantive reasons for choos-
ing the general statement of health as a reference indicator because
it was structurally different from the two more specific indicators
and could be seen as best representing the construct “perceived
general health.” In the multirater data example, there were also
clear arguments as to why the child report of externalizing symp-
tomatology was chosen as reference indicator; the child is differ-
entiated from both parents by developmental stage and thus rep-
resents a unique method source.

If no indicator or method is particularly outstanding or special,
the choice of a reference indicator may be more difficult. For
example, items may be randomly sampled from an item pool, and
consequently, none of the items may be particularly outstanding. A
promising approach for applications with no clear reference indi-
cator seems to be the model with IT factors that does not require
the selection of a reference method. Although the IT approach
performed very well in general, theoretically, it seems to be a
particularly good choice when method effects are expected to be
rather strong. Strong method effects may imply that different
indicators reflect distinct facets of a construct (or even distinct
constructs) and therefore should be modeled as separate traits (see
Fiske & Campbell, 1992, for a related discussion). Under these
conditions, however, researchers should carefully examine
whether the assumption of unidimensionality of occasion-specific
effects across indicators made by all conventional LST models is
still reasonable. As shown by our application to multirater data,
one complication in this regard is that violations of this assumption
may not be detectable based on model fit; all models that ac-
counted for method effects fit the data well and were virtually
indistinguishable based on fit indices (this was also found in the
simulation study). Therefore, researchers need to refer to substan-
tive theory to check whether the obtained estimates of occasion-
specificity and reliability are reasonably large. If this does not
seem to be the case, multiple-indicator LST models that do not
require the assumption of homogeneous occasion-specific effects
across all indicators may be more appropriate.

With small amounts of method variance, the IT factors will be
highly correlated, signaling rather high homogeneity of indicators
(e.g., in our application to firefighters’ health). This is not a
problem per se if model convergence is achieved and all estimates
are proper. However, it could be an undesirable feature when trait
factors are used as independent variables in extended analyses with
covariates. Here, issues of multicollinearity may arise that may
complicate the analysis and interpretation of the results (Eid et al.,
1999). One approach to the problem of collinearity is the specifi-
cation of a higher order trait factor on which the correlated first-
order IT factors load (for an example, see Schmukle & Egloff,
2005). This second-order common trait could then be used as a
single predictor in an extended analysis. However, as has been
shown by Eid (1996), such a factor cannot be constructively
defined based on the fundamental latent variables considered in
LST theory. As a consequence, although we can attach an intuitive
meaning to this factor (“it is what the first-order trait factors share
in common”), this factor does not have a clear meaning (in terms
of a conditional expectation or function of a conditional expecta-
tion of an observed variable; see Appendix A). This does not mean
that such an approach should not be used. However, it means that
researchers should be aware that with such a model, they leave the
ground of well-defined latent variables as provided in classical

LST theory and have to be more careful with the interpretation of
such a factor (Eid, 1996).

Another option would be to define a common trait as an average
of the first-order trait factors. Such an approach has recently been
presented by Pohl and Steyer (2010) in the context of cross-
sectional MTMM models. The advantage of this approach is that
the higher order trait does have a clear meaning as the average of
the (psychometrically well-defined) first-order latent trait vari-
ables. The question would of course be whether it is meaningful to
look at this average. This question needs to be carefully addressed
based on substantive theory in each individual application.

Finally, if indicators are very homogeneous and, consequently,
collinearity is an issue, one may opt for the M — 1 approach and
define a single specific trait factor based on a reference indicator.
Given that indicators are close to unidimensional, from a substan-
tive point of view, it may not really matter which indicator is
chosen as the reference indicator to represent the trait.

Limitations

One critique of our recommendation of the M — 1 and IT
approaches may be that neither of these approaches allows defin-
ing pure, method-free trait factors, as the trait factors in both
approaches contain method-specific variance. Consequently, com-
mon and unique consistency coefficients either cannot be defined
(IT model) or are defined relative to a reference indicator (M — 1
model). This may be seen as a limitation by researchers who are
interested in modeling a single common trait factor and/or in
separating common and unique consistency for all indicators.

Another limitation is that in our simulation study, we only
considered two factors: method variance and sample size. Other
parameters likely also influence model performance. For example,
it would be interesting to study whether a larger number of
measurement occasions and/or an increased number of high-
quality indicators could reduce some of the estimation problems
observed at small sample sizes. Future research should also exam-
ine how the inclusion of an autoregressive component, as in
LaGrange and Cole’s (2008) study, interacts with different sample
sizes and levels of method variance.

Conclusion

We fully agree with LaGrange and Cole (2008) that a model
should mainly be selected based on theoretical (rather than empir-
ical) considerations. In line with Eid (1996), we believe that there
is good reason to select an LST model variant in which all latent
variables are explicitly defined as conditional expectations of
observed variables. Such models are in line with the fundamental
concepts of LST theory (Steyer & Schmitt, 1990a), and they
provide well-defined and clearly interpretable latent variables.
This is the case for both the M — 1 and IT models. Interestingly,
these two models also showed the best performance in our simu-
lation study. On the basis of our theoretical and empirical results,
we recommend that readers use one of the two approaches de-
pending on their particular research problem to account for method
effects in LST analyses.
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Appendix A

Fundamental Concepts of Latent State—Trait Theory and Constructive Definition of
Latent Variables

In this appendix, we summarize the fundamental concepts of
latent state—trait (LST) theory (e.g., Steyer et al., 1992) and
show that all latent variables in LST theory are defined as
conditional expectations of observed variables or well-defined
functions of these conditional expectations. Furthermore, we
show that the no method factor (NM), indicator-specific trait
(IT), and M — 1 method factors models can be formulated
directly on the basis of these well-defined latent variables. As a
consequence, all latent factors in these models are also well-
defined in the sense that they are conditional expectations of
observed variables or well-defined functions of these condi-
tional expectations. In addition, we explain why the latent
variables in the correlated uniqueness (CU) and orthogonal
methods (OM) models cannot be derived on the basis of the
fundamental concepts of LST theory, so that, in a strict sense,
these models cannot be considered true LST models.

Random Experiment

The starting point for introducing the fundamental concepts of
LST theory is the definition of the underlying random experiment
(RE). This RE characterizes the empirical phenomenon of interest
in LST research (i.e., the measurement of persons in situations)
and provides the formal theoretical background based on which (a)
the relevant latent variables and (b) appropriate statistical mea-
surement models can be defined. This RE differs from classical
experiments in that it does not involve an experimental manipu-
lation of independent variables. Instead, this experiment refers to
measuring an attribute of the same person across different situa-
tions using multiple measurements (e.g., multiple indicators, rat-
ers, observations, or methods) at each time point. Formally, the RE
in LST theory consists of the following set ) of possible outcomes
(e.g., Eid, 1996; Steyer et al., 1992):

Q=0 X Qg X Qe X oo o X Qi X Qe X

X QSil,, X QMm”? (A 1 )

where (), is the set of observational units u (persons); () is the
set of situations at time #, t = 1, . .., n; {yy,,, is the set comprising
all measurements at time #; and X is the Cartesian product oper-
ator. Because we assume multiple measurements per person at
each time point, each set (,, itself consists of the Cartesian
product of subsets Q.

QMea, = QMfu,, X...X QM«umz’ (Az)

where the subsets ), contain the values on the observed indi-
cators 7 (e.g., item or scale scores), i = 1, ..., m, at time .

As an example, consider the case of m = 2 indicators (i = 1, 2),
each of which is measured on n = 2 time points (# = 1, 2). For this
example, () can be written as

Q=Q0Q,X Qsm XQMMI XQSithQMeuz

= QU X QSiu X QMean X QMeazl X QSiIz X QMealz X ‘Q’Meazz'
(A3)

Furthermore, an element of () can be written as w=(u, sit,, mea,,,
mea,,, Sit,, mea,,, mea,,), where u indicates the specific person
drawn from the set of persons (), sit, indicates the specific situation
drawn from the set of situations {1, on the first time point, mea, ,
indicates the specific score observed for the first indicator (e.g., test or
questionnaire) on the first time point, mea,, indicates the specific
score observed for the second indicator on the first time point, sit,
indicates the specific situation drawn from the set of situations {)g;, on
the second time point, mea,, indicates the specific score observed for
the first indicator on the second time point, and mea,, indicates the
specific score observed for the second indicator on the second time
point. It is important to note that (a) the term situation refers to both
inner and outer influences and (b) the situations do not have to be
known. Moreover, they need not be the same for all persons (Steyer,
1988).

The values of the random variable Y, are the observed scores
obtained for indicator i at time 7. The values of the mapping
P Q—Q, are the persons u. The values of the mapping
Dsir: 0 — Qg are the situations in which the persons are measured
at a particular measurement occasion ¢. The values of (p,, pg;,) are
the persons in situations at time ¢.

Definition of Basic Latent Variables

The latent state variables S, are defined as
S, =EY, | Pus Dsit)- (A4)

In Equation A4, E(Y|p,, ps:) denotes the conditional expecta-
tion (regression) of an observed variable Y;, given the person
and the situation variables. The measurement error variables €;,
are defined as

€, =Y, — E(Yy | pu Psiv)- (A5)

Equation A5 shows that €, is defined as a residual with regard to
the regressor E(Y;|p., ps:). Taken together, Equations A4 and AS
imply the following basic decomposition of observed variables in
LST theory:

Yi = S+ & (A6)

i

where €; by definition has an expected value of zero and is
uncorrelated with the regressor S; (Steyer, 1989; Zimmerman,
1975). The following simple manipulation of E(Y;|p,, ps) allows
defining latent trait and latent state residual variables:
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E(Yy | P Psi) = EYi | p) + [E(Y, | pus Psii) — E(Yy | p)].
(A7)

The latent trait variables are defined as the conditional expectation
of an observed variable given the person:

T, =E(Y;|p.). (A8)

The latent state residual variables are defined as the conditional
expectation given the person and the situation minus the condi-
tional expectation of an observed variable given the person:

SR, = E(Y, | p. psi) — E(Yy| p.) (A9)
= Sir - Tir

Equation A9 shows that individual values on the variable SR,
represent the differences between latent state and latent trait
scores. Consequently, S; = 7, + SR;. Combining this equation
with Equation A6 yields the basic state—trait decomposition of
observed variables in LST theory:

Y, =S, +¢,

=T, + SR; + & (A10)

Up to this point, no restrictive assumptions have been made. We
have just defined the basic concepts of LST theory. All latent
variables defined above are indicator-specific, that is, each ob-
served variable is decomposed into its own latent trait, latent state
residual, and error variable. Consequently, no testable assumptions
are implied so far. More importantly, at this point, the variances of
the latent variables cannot be estimated without further assump-
tions due to underidentification. The next section describes how—
based on the concepts above—restrictive assumptions can be in-
troduced to obtain three identified LST measurement models, the
NM, IT, and M — 1 models. For simplicity, we assume that all
observed and latent variables are in deviation form (i.e., mean
centered), so that there are no additive constants.

Definition of the NM Model

The NM model is defined by the following assumptions:

1. Congenerity of latent trait variables across all m indica-

tors and all n time points:
Tit = )\ii’n’Ti’z’v (Al 1)

where i,i' €I1={1,...,m}, t, EK={1,...,n}, and N\,
is a real constant.

2. Occasion-specific congenerity of latent state residual

variables:
SR[I = ai['ISRi'l’ (AIZ)

where 9;;, is a real constant.

Equations A1l and A12 can be understood as homogeneity as-
sumptions. Equation A11 states that all indicator-specific latent trait
variables differ only by a multiplicative constant. Likewise, Equation
A12 states that all indicator-specific state residual variables measured
on the same occasion of measurement differ only by a multiplicative
constant. It can be shown that these two assumptions imply the
existence of a common (indicator- and occasion-unspecific) latent
trait factor 7 for all indicators and common (occasion-specific) latent
state residual factors SR, for all indicators measured at the same
occasion of measurement (e.g., Steyer, 1988). In addition, the follow-
ing mean and covariance restrictions apply in this model:*' E(g;) =
E(SR,) = Cou(T, SR,) = Cov(T, ;) = Cov(g,, SR,) = 0, Cov(SR,,
SR,) = 0, for t # ', and Cov(€,, €;,,) = O for (i, 1) # (@', t').

Definition of the IT Model

In the IT model, each indicator loads onto its own latent trait
factor, that is, trait factors are assumed to be indicator-specific.
Consequently, the first assumption differs from the first assump-
tion made in the NM model.

1. Indicator-specific congenerity of latent trait variables:

Tit = )\m’Tit’a (A13)
where i €I1={1,...,m}, tf/ €K={l,..., n}. In contrast
to Equation All, Equation A13 postulates homogeneity of
trait variables T}, and T, only for indicators with the same
index i, implying the existence of common (but indicator-
specific) trait factors 7,. Hence, this assumption is less re-
strictive than the assumption in Equation Al1l. Common
occasion-specific factors are defined in the same way as for
the NM model (see Equation A12). In addition, the following
mean and covariance restrictions apply in this model: E(€;) =
E(SR,) = Cov(T,, SR,) = Cow(T},, €;), = Cov(g;,, SR,) = 0,
Cov(SR,, SR,)) = O for t # t', and Cov(g,, €;,,) = O for (i, ) #
@, ).

Definition of the M — 1 Model

In the M — 1 model, a reference indicator Y,, with correspond-
ing reference trait variable 7,, is selected (Eid et al., 1999).
Indicator-specific congenerity of the reference trait variables 7, is
assumed:

Al Some of the mean and covariance restrictions in this model (and other
models discussed here) directly follow from the definition of the latent
variables in Equations A4, AS, A6, and A7 (i.e., they do not require
additional assumptions), whereas others do require the additional assump-
tion of conditional regressive independence (Steyer et al., 1992; Steyer &
Schmitt, 1990a). For simplicity and clarity, we do not distinguish between
those restrictions that follow from the basic definitions and those that
require additional assumptions. Interested readers may consult Steyer
(1988) or Steyer and Schmitt (1990a) for more details.
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1. Congenerity of reference trait variables:

Trl = )\m’Tn’a (A14)
wherer €I1={1,...,m},t,t' €K={1,...,n}. This homo-
geneity assumption implies the existence of a common trait
factor 7, for the reference indicators. Furthermore, the non—
reference trait variables are linearly regressed on the refer-
ence trait factor 7,:

2. Linear regression of the non-reference trait variables on
the reference trait factor T:
E(T,|T) = \T. (A15)
3. Definition of method variables 7R;, as residuals of this
regression analysis:

TR, =T, — E(T; | T). (A16)

4. Assumption of congenerity of trait residual variables:

TRit = W’m'TRn', (A17)
where v, is a real constant. Equation A17 postulates homo-
geneity of method variables 7R,, and TR;, pertaining to the
same indicator i, implying the existence of common trait
residual factors 7R;. In addition, the following mean and
covariance restrictions apply in this model: E(€;,) = E(SR,) =
E(TR,) = Cow(T,, SR) = Cow(T,, TR;) = Cov(T,, €,) =
Cow(TR;, SR,) = CoW(TR,, €;.,) = Cov(g;, SR,.) = 0, Cov(SR,,
SR,) = 0 for t # t', and Cov(g,, €;,) = 0 for (i,r) # (i’, t').

The CU Model

The CU model is defined by the same assumptions as the NM
model but relaxes the assumption of uncorrelated errors such that
error variables with the same index i can be correlated:

Cov(g,, &,) =0 for i # i"and (i, 1) # (i',1).
(A18)

Equation A18 shows that, in contrast to the IT and M — 1
models, the CU model does not define person-specific method
effects as a well-defined function of the conditional expectation
E(Y,|p,) (i.e., as a function of the latent trait variables 7)) but
instead views person-specific method effects as part of the error
variables €;. This view, however, is not in line with the definition
of the error variable in LST theory (see Equation A5). According
to Equation AS, the error variable is defined as that part of an
observed variable that is not due to systematic person or situation
effects (i.e., that part of Y,, that is not determined by the regressors
p. and pg;,). However, logically, a person-specific method effect
must be related to the conditional expectation given the person
E(Y,|p,) because a person-specific method effect reflects one part
of Y, that is systematic and stable over time. Consequently, the
implicit assumption made in the CU model, according to which
method effects are part of the error variable, is at odds with the
basic definition of the error variable in Steyer et al.’s (1992) LST
theory. Therefore, the CU model cannot be considered an LST
model in a strict sense.

The OM Model

As has been shown by Eid (1996), the common method factors
M, specified in the OM model cannot be defined as well-defined
functions of the conditional expectation E(Y,|p,) (i.e., as functions
of the latent trait variables 7},). Consequently, the theoretical status
of the method factors M, is unclear, at least according to Steyer et
al.’s (1992) classical LST framework. Moreover, the theoretical
status of the remaining latent variables in this model also becomes
dubious when the factors M, are included because the M, factors
reflect part of the stability of the indicators, albeit not in a well-
defined way. Consequently, like the CU model, the OM model
cannot be considered an LST model in a strict sense (Eid, 1996).
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Appendix B

Summary of Empirical Studies That Have Used Multiple-Indicator Latent

State-Trait Models

Article N w 1 Model Construct
Steyer, Majcen, Schwenkmezger, & Buchner (1989) 64 2 2 NM anxiety
Steyer, Schwenkmezger, & Auer (1990) 179 2 2 CU anxiety
Steyer & Schmitt (1990b) 152 3 4 CU, IT attitudes toward guest workers
Kirschbaum et al. (1990) 48 2 2 NM salivary cortisol
54 3 2 NM salivary cortisol
Ormel & Schaufeli (1991)* 226 3 2 M -1 psychological distress, locus of control,
& self-esteem
389 5 2 NM psychological distress, locus of control,
& self-esteem
Schmitt & Steyer (1993) 380 2 2 OM social desirability
215 3 2 oM social desirability
Steyer & Schmitt (1994) 502 4 2 M -1 well-being
Eid, Notz, Steyer, & Schwenkmezger (1994) 496 4 2 oM mood level & mood reactivity
Deinzer et al. (1995) 502 4 2 OM 12 personality dimensions
Preville et al. (1996) 46 3 5 NM cortisol reactivity
Dumenci & Windle (1996) 805 4 4 OM depressive symptoms
Dumenci & Windle (1998) 1,061 4 3 OM depressed mood
Windle & Dumenci (1998) 536 4 4 oM depressed mood
Eid & Hoffmann (1998) 370 4 2 1T interest in topic of radioactivity
Eid, Schneider, & Schwenkmezger (1999) 176 3 2 M -1 self-perceived mood deviation
Steyer, Schmitt, & Eid (1999) 503 2 2 1T awakeness vs. sleepiness mood state
Eid & Diener (1999) 180 3 2 IT affect
Schmitt & Maes (2000) 1,065 2 2 oM depressive symptoms
Tisak & Tisak (2000) 116 3 4 oM affective commitment
117 3 4 OM continuance commitment
Schmukle, Egloff, & Burns (2002) 292 3 2 1T positive affect & negative affect
Mohiyeddini, Hautzinger, & Bauer (2002) 188 2 2 oM depression
Hagemann, Naumann, Thayer, & Bartussek (2002) 59 4 2 NM resting EEG asymmetry
Blickle (2003) 209 2 4 1T intraorganizational influence attempts
Moskowitz & Zuroff (2004) 119 3 2 1T flux, pulse, & spin
Davey, Halverson, Zonderman, & Costa (2004) 737 5 3 CU,M—-1 depressive symptoms
Schermelleh-Engel, Keith, Moosbrugger, & Hodapp (2004) 395 3 3 M -1 test anxiety
Yasuda, Lawrenz, Van Whitlock, Lubin, & Lei (2004) 235 3 5 CU affect
Eid & Diener (2004) 249 3 2 1T subjective well-being
Schmitt, Gollwitzer, Maes, & Arbach (2005) 1,258 2 2 M—1 justice sensitivity
Hagemann, Hewig, Seifert, Naumann, & Bartussek (2005) 59 3 2 NM resting EEG asymmetry
Schmukle & Egloff (2005) 65 2 2 1T implicit & explicit personality
Khoo, West, Wu, & Kwok (2006) 188 3 4 OM conscientiousness
Baumgartner & Steenkamp (2006) 1,991 3 9 modified OM  brand loyalty & deal proneness
Dormann, Fay, Zapf, & Frese (2006) 157 4 2 CU job satisfaction
Schmitt (2000) 206 3 2 oM mother—daughter attachment & family
cohesion
Hellhammer et al. (2007) 239 6 2 NM cortisol rise after wakening
Bonnefon, Vautier, & Eid (2007) 484 2 6 IT contrapositive reasoning
Courvoisier, Eid, & Nussbeck (2007)* 501 4 2 M -1 mood
Booth, Granger, & Shirtcliff (2008) 724 4 2 NM cortisol levels
Hermes et al. (2009) 38 2 2 NM cerebral blood flow
Olatunji & Cole (2009)* 787 8 2 TSO anxiety
Ziegler, Ehrlenspiel, & Brand (2009) 156 2 4 CU competitive anxiety
Boll, Michels, Ferring, & Filipp (2010) 709 2 2 OM differential parental treatment
Courvoisier, Eid, Lischetzke, & Schreibner (2010)* 307 6 2 IT mood
Danner, Hagemann, Schankin, Hager, & Funke (2010) 173 2 2 OM intelligence, decision making, &
learning
Weijters, Geuens, & Schillewaert (2010) 1,506 2 3 CU response style
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Article N w 1 Model Construct
Courvoisier et al. (2011)* 15,282 4 2 1T psychosocial health
Kertes & van Dulmen (2011) 164 3 2 NM cortisol
Luhmann, Schimmack, & Eid (2011)* 37,041 16 2 M -1 affective well-being
Ploubidis & Frangou (2011) 3,445 2 30 NM psychological distress
Stalder et al. (2011) 64 3 2 CM hair cortisol
Lorber & O’Leary (2012)* 396 4 2 oM, IT" aggression
Eid, Courvoisier, & Lischetzke (2011)* 305 6 2 1T mood
Median 249 3 2
Mean 1,349.298° 3474  3.140
Mode 3 2
Minimum 38 2 2
Maximum 37,041 16 30
SD 5,227.155 2.097 3.847

Note. W = number of waves; I = number of indicators per wave; CU = correlated uniqueness approach; OM = M orthogonal method factor approach;
M — 1 = M — 1 correlated method factor approach; IT = indicator-specific trait factor approach; TSO = trait—state—occasion model without method
factors; CM = M correlated method factor approach; EEG = electroencephalogram.

“ Denotes studies that tested latent state—trait models with an autoregressive component.
study. ©The mean sample size without including Courvoisier et al. (2011) and Luhmann et al. (2011) is 447.

° Not explicitly interpreted as an IT model by the authors of the
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